If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2n^2+n-1600=0
a = 2; b = 1; c = -1600;
Δ = b2-4ac
Δ = 12-4·2·(-1600)
Δ = 12801
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{12801}}{2*2}=\frac{-1-\sqrt{12801}}{4} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{12801}}{2*2}=\frac{-1+\sqrt{12801}}{4} $
| -4x+6=34= | | 6x+2=-10= | | 180-13x+180-14x+90=180 | | 71+83+82+76+2x/6=80 | | 18x-15=7x=+10 | | h+1/2=1/3 | | k/2– 7= -5 | | 0.6n=1.5 | | 8=x/23 | | 19j-15j=20 | | -25=x/29 | | (x)=25 | | 8j=10j–4 | | 18x^2-59x=14 | | -8x-1=-5x=23 | | 7–7g=-8g | | (60+20)x=400+20x | | -8–6c=2c | | 5v=-7+4v | | 7x-14/3+2=2x | | 2x2+24=2/7x | | 9u=-2u–7 | | 2/3/10=x/12 | | 9=m/5-7 | | 15^-6y=4 | | -7y+7y-18y=18 | | 5.1=-7r | | 2x+20=−3x. | | x=20(10) | | -7z=-9z-8 | | 4x+2+-7x-2=7 | | 11a-8a=18 |